

Comune di Cava de' Tirreni

Provincia di Salerno

Recupero complesso edilizio San Lorenzo denomina to "exasilo di Mendicità" Il Lotto

Dirigente del 4°Settore Lavori Pubblici ing. Antonino Attanasio

Responsabile Unico del Procedimento ing. Gabriele De Pascale

Supporto al RUP ing. Angelo D'Amico

GRUPPO DI PROGETTAZIONE

Architettura arch. Giosuè Gerardo Saturno Strutture e impianti Studio Paris Engineering Geologia dott.ssa geol. Rosanna Miglionico Sicurezza ing. Gianluigi Accarino Restauro artistico dott. Fabio Sinisclachi

Progetto nuova scala interna in c.a.: Relazione geotecnica

STR.16

Revisione n.

data

oggetto

1

2

3

SCALA

DATA marzo 2022

RELAZIONE GEOTECNICA

Sono illustrati con la presente i risultati dei calcoli che riguardano il progetto delle armature, la verifica delle tensioni di lavoro dei materiali e del terreno.

NORMATIVA DI RIFERIMENTO

I calcoli sono condotti nel pieno rispetto della normativa vigente e, in particolare, la normativa cui viene fatto riferimento nelle fasi di calcolo, verifica e progettazione è costituita dalle *Norme Tecniche per le Costruzioni*, emanate con il D.M. 17/01/2018 pubblicato nel suppl. 8 G.U. 42 del 20/02/2018, nonché la Circolare del Ministero Infrastrutture e Trasporti del 21 Gennaioo 2019, n. 7 "*Istruzioni per l'applicazione delle nuove norme tecniche per le costruzioni*".

Per il calcolo delle strutture in oggetto si adotteranno i criteri della Geotecnica e della Scienza delle Costruzioni.

CAPACITÀ PORTANTE DI FONDAZIONI SUPERFICIALI

La verifica della capacità portante consiste nel confronto tra la pressione verticale di esercizio in fondazione e la pressione limite per il terreno, valutata secondo *Brinch-Hansen*:

$$q_{lim} = q Nq Yq iq dq bq gq sq + c Nc Yc ic dc bc gc sc + $\frac{1}{2} G B' Ng Yg ig bg sg$$$

dove

Caratteristiche geometriche della fondazione:

q = carico sul piano di fondazione

 $B = lato\ minore\ della\ fondazione$

 $L = lato\ maggiore\ della\ fondazione$

D = profondità della fondazione

 α = inclinazione base della fondazione

G = peso specifico del terreno

B' = larghezza di fondazione ridotta = B - 2 eB

L' = lunghezza di fondazione ridotta = L - 2 eL

Caratteristiche di carico sulla fondazione:

H = risultante delle forze orizzontali

N = risultante delle forze verticali

eB = eccentricità del carico verticale lungo B

eL = eccentricità del carico verticale lungo L

 $FhB = forza\ orizzontale\ lungo\ B$

 $FhL = forza\ orizzontale\ lungo\ L$

Caratteristiche del terreno di fondazione:

 β = inclinazione terreno a valle

c = cu = coesione non drenata (condizioni U)

c = c' = coesione drenata (condizioni D)

 Γ = peso specifico apparente (condizioni U)

 $\Gamma = \Gamma' = peso \ specifico \ sommerso \ (condizioni \ D)$

 $\phi = 0 = angolo di attrito interno (condizioni U)$

 $\phi = \phi' = angolo di attrito interno (condizioni D)$

Fattori di capacità portante:

$$Nq = \tan^2(\frac{\pi}{4} + \frac{\phi}{2}) \exp(\pi \cdot \tan \phi)$$

(Prandtl-Caquot-Meyerhof)

$$Ng = 2(Nq + 1)\tan\phi \qquad (Vesic)$$

$$Nc = \frac{Nq - 1}{\tan \phi}$$
 in condizioni D (Reissner-Meyerhof)

$$Nc = 5,14$$
 in condizioni U

Indici di rigidezza (condizioni D):

$$Ir = \frac{G}{c' + q' \tan \phi}$$
 = indice di rigidezza

q' = pressione litostatica efficace alla profondità $D + \frac{B}{2}$

$$G = \frac{E}{2(1+\mu)}$$
 = modulo elastico tangenziale

E =modulo elastico normale

 μ =coefficiente di *Poisson*

$$Icr = \frac{1}{2} \exp \left[\frac{3,3 - 0,45 \frac{B}{L}}{\tan(45 - \frac{\phi'}{2})} \right] = \text{indice di rigidezza critico}$$

Coefficienti di punzonamento (Vesic)

$$Yq = Yg = \exp\left[\left(0.6\frac{B}{L} - 4.4\right) \tan\phi' + \frac{3.07\sin\phi' \log(2Ir)}{1 + \sin\phi'}\right] \text{ in condizioni drenate, per Ir } \leq \text{Icr}$$

$$Yc = Yq - \frac{1 - Yq}{Nq \times \tan\phi'}$$

Coefficienti di inclinazione del carico (Vesic):

$$ig = \left(\frac{1 - H}{N + B \times L \times c' \times \cot ang\phi'}\right)^{m+1}$$

$$iq = \left(\frac{1 - H}{N + B \times L \times c' \times \cot \phi'}\right)^{m}$$

$$ic = iq - \frac{1 - iq}{Nc \times \tan \phi'}$$
 in condizioni D

$$ic = 1 - \frac{m \times H}{B \times L \times cu \times Nc}$$
 in condizioni U

essendo:

$$m = mB\cos^2\Theta + mL\sin^2\Theta$$

$$mB = \frac{2 + \frac{B'}{L'}}{1 + \frac{B'}{L'}} \qquad mL = \frac{2 + \frac{L'}{B'}}{1 + \frac{L'}{B'}}$$

$$mL = \frac{2 + \frac{L'}{B'}}{1 + \frac{L'}{B'}}$$

$$\Theta = \tan^{-1} \frac{Fh \times B}{Fh \times L}$$

Coefficienti di affondamento del piano di posa (Brinch-Hansen):

$$dq = 1 + 2 \tan \phi (1 - \sin \phi)^2 \arctan \frac{D}{R'}$$
 per D > B'

$$dq = 1 + 2\frac{D}{B'}\tan\phi(1 - \sin\phi)^2 \qquad \text{per D} \le B'$$

$$dc = dq - \frac{1 - dq}{Nc \times \tan \phi}$$
 in condizioni D

$$dc = 1 + 0.4 arc \tan \frac{D}{B'}$$
 per D > B' in condizioni U
 $dc = 1 + 0.4 \frac{D}{B'}$ per D \le B' in condizioni U

Coefficienti di inclinazione del piano di posa:

$$bg = \exp(-2.7\alpha \tan \phi)$$

 $bc = bq = \exp(-2\alpha \tan \phi)$ in condizioni D
 $bc = 1 - \frac{\alpha}{147}$ in condizioni U
 $bq = 1$ in condizioni U)

Coefficienti di inclinazione del terreno di fondazione:

$$gc = gq = \sqrt{1 - 0.5 \tan \beta}$$
 in condizioni D
 $gc = 1 - \frac{\beta}{147}$ in condizioni U
 $gq = 1$ in condizioni U

Coefficienti di forma (De Beer):

$$sg = 1 - 0.4 \frac{B'}{L'}$$

$$sq = 1 + \frac{B'}{L'} \tan \phi$$

$$sc = 1 + \frac{B'}{L'} \frac{Nq}{Nc}$$

L'azione del sisma si traduce in accelerazioni nel sottosuolo (effetto cinematico) e nella fondazione, per l'azione delle forze d'inerzia generate nella struttura in elevazione (effetto inerziale). Tali effetti possono essere portati in conto mediante l'introduzione di coefficienti sismici rispettivamente denominati Khi e Igk, il primo definito dal rapporto tra le componenti orizzontale e verticale dei carichi trasmessi in fondazione ed il secondo funzione dell'accelerazione massima attesa al sito. L'effetto inerziale produce variazioni di tutti i coefficienti di capacità portante del carico limite in funzione del coefficiente sismico Khi e viene portato in conto impiegando le formule comunemente adottate per calcolare i coefficienti correttivi del carico limite in funzione dell'inclinazione, rispetto alla verticale, del carico agente sul piano di posa. Nel caso in cui sia stato attivato il flag per tener conto degli effetti cinematici il valore Igk modifica invece il solo coefficiente Ng; il fattore Ng viene infatti moltiplicato sia per il coefficiente correttivo dell'effetto inerziale, sia per il coefficiente correttivo per l'effetto cinematico.

CALCOLO DEI CEDIMENTI

Il calcolo viene eseguito sulla base della conoscenza delle tensioni nel sottosuolo.

$$\mu = \int \frac{\sigma(z)}{F} dz$$

essendo

E = modulo elastico o edometrico $\sigma(z) = tensione verticale nel sottosuolo dovuta all'incremento di carico q$

La distribuzione delle tensioni verticali viene valutata secondo l'espressione di *Steinbrenner*, considerando la pressione agente uniformemente su una superficie rettangolare di dimensioni B e L:

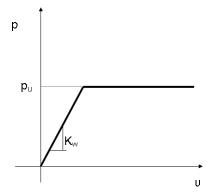
$$\sigma(z) = \frac{q}{4\pi} \left[\frac{2 \times M \times N \times \sqrt{V} \times (V+1)}{V(V+V1)} + \left| arc \tan \frac{2 \times M \times N \times \sqrt{V}}{V-V1} \right| \right]$$

con:

$$M = B / z$$

 $N = L / z$
 $V = M^2 + N^2 + 1$
 $V1 = (M \times N)^2$

CALCOLO NON LINEARE DELLE FONDAZIONI


Con le nuove norme tecniche sulle costruzioni la verifica agli S.L.U. delle fondazioni risulta particolarmente onerosa, in particolare nel caso di azioni sismiche rilevanti.

Questo rende difficoltosa l'applicazione in forma automatica del classico modello rigido plastico in quanto non risulta spesso chiaro a quale porzione dell'intero sistema fondale ci si debba riferire nella scrittura dell'equilibrio limite. Tale metodo, inoltre, non è applicabile nel caso di platee di forma generica.

Tale impostazione risulta infatti chiaramente legata ad un approccio di calcolo 'manuale' che necessita di valutazioni di tipo ingegneristico che mal si adattano ad un approccio di tipo numerico.

Per potere ovviare a tale limite si è implementato un tipo di verifica in cui la modellazione agli elementi finiti dell'intera struttura di fondazione può essere costituita, nella forma più generale, da travi rovesce, plinti, pali e platee e quindi dal terreno.

In particolare gli elementi strutturali vengono modellati in campo elastico lineare mentre il terreno viene modellato come un letto di molle non lineari e non reagenti a trazione il cui legame costitutivo, per una area di impronta unitaria, è rappresentato dal diagramma seguente:

Il legame di tipo elastoplastico reagente a sola compressione è ottenuto utilizzando come rigidezza all'origine la costante di *Winkler* del terreno e come resistenza il valore della capacità portante ultima calcolata con le normali teorie di *Brinch-Hansen* e *Vesic*. Il modello così ottenuto è in grado di tenere in conto dell'eterogeneità del terreno in maniera puntuale.

A questo punto viene condotta un'analisi non lineare a controllo di forza incrementando le azioni agenti fino ad ottenere il collasso della fondazione.

Al fine di verificare la compatibilità delle deformazioni del terreno, che in campo plastico possono diventare molto elevate, con la effettiva capacità di ridistribuzione della fondazione, durante l'analisi viene limitata la rotazione tra i vari punti della stessa. Il raggiungimento di una prefissata rotazione ultima individua il criterio per la determinazione del moltiplicatore di collasso.

Tale modalità di analisi risulta descritta anche nel codice *FEMA 356*, codice di indubbio valore internazionale, a cui può farsi riferimento come previsto dal Cap. 12 delle NTC 2018.

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa dei dati geometrici delle travi Winkler.

Trave : numero sequenziale della trave

Asta3d : numero asta tipo in C.D.S. Win (spaziale)

Filo Iniz : primo filo fisso

Filo Fin. : secondo filo fisso

Nodo3d In. : numero Nodo3d primo filo fisso

Nodo3d Fin : numero Nodo3d secondo filo fisso

X3d In. : ascissa Nodo3d Iniziale

Y3d In. : ordinata Nodo3d Iniziale

Z3d In. : quota Nodo3d Iniziale

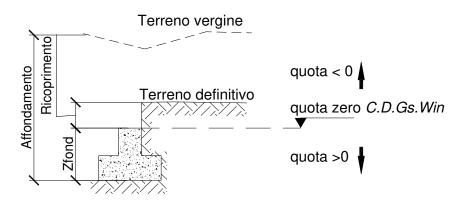
X3d Fin : ascissa Nodo3d finale

Y3d Fin : ordinata Nodo3d finale

Z3d Fin : quota Nodo3d finale

Xfond : ascissa baricentro fondazione

Yfond : ordinata baricentro fondazione


Zfond : quota baricentro base di fondazione nel riferimento di C.D.Gs. Win

Bfond : dimensione trasversale trave Winkler

Lfond : dimensione longitudinale trave Winkler

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa della stratigrafia del terreno sottostante le travi Winkler.

NOTA: La quota zero di *C.D.Gs. Win* coincide con la quota numero zero dell'alberello quote di *C.D.S. Win* ma cambia la convenzione nel segno: infatti in C. D. Gs. le quote sono positive crescenti procedendo verso il basso, mentre in *C. D. S.* le quote sono positive crescenti verso l'alto.

Trave : numero di trave

Q.t.v. : quota terreno vergine

Q.t.d. : quota definitiva terreno

Q.falda : quota falda

InclTer : inclinazione terreno

Numero strato : Numero dello strato a cui si riferiscono i dati che seguono

Sp.str. : Spessore strato. L'ultimo strato ha spessore indefinito, pertanto il

relativo dato non viene stampato

Peso Sp : peso specifico

Fi : angolo di attrito interno in gradi

C' : coesione drenata

Cu : coesione non drenata

Mod.El. : modulo elastico

Poisson : coefficiente di Poisson

Gr.Sovr : grado di sovraconsolidazione

Mod.Ed : modulo edometrico

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa delle risultanti delle sollecitazioni agenti sull'area d'impronta delle travi *Winkler*, nel sistema di riferimento locale (y=asse trave).

Trave : numero di trave sequenziale

Comb. : Numero della combinazione a cui si riferiscono i dati che seguono

Rv : Risultante delle pressioni verticali

Vx : Risultante delle sollecitazioni agenti parallelamente all'asse x

locale dell' asta

Vy : Risultante delle sollecitazioni agenti parallelamente all'asse y

locale dell' asta

Mrx : Momento risultante di asse vettore x nel sistema di riferimento

locale dell' asta (momento flettente)

Mry : Momento risultante di asse vettore y nel sistema di riferimento

locale dell' asta (momento torcente)

SPECIFICHE CAMPI TABELLA DI STAMPA

La verifica allo scorrimento delle fondazioni superficiali è stata condotta calcolando la resistenza limite secondo la seguente relazione, che tiene in conto sia il contributo ad attrito che quello coesivo:

$$V_{res} = \frac{N}{\gamma_r} \times \frac{tg\varphi}{\gamma_{\varphi}} + \frac{A}{\gamma_r} \times \frac{C}{\gamma_C}$$

in cui:

 g_{\emptyset} g_{C} : Coefficienti parziali per i parametri geotecnici (NTC Tabella 6.2.II)

gr : Coefficienti parziali SLU fondazioni superficiali (NTC Tabella 6.4.1)

Si riporta di seguito la spiegazione delle sigle usate nella precedente relazione e nella relativa tabella di stampa.

Comb. : Numero combinazione a cui si riferisce la verifica

Tipo Elem. : Tipo di elemento strutturale: Trave/Plinto/Piastra

Elem. N.ro : Numero dell'elemento strutturale (numero Travata/Filo/Nodo3D) in base al tipo

elemento (Asta Winkler/Plinto/Platea)

N : Scarico verticale

tg φ/ σφ/ : Coefficiente attrito di progetto

gr

C/ gc/ gr : Adesione di progetto

Area : Area ridotta

Vres : Resistenza allo scorrimento dell' elemento strutturale

Fh : Azione orizzontale trasmessa dall' elemento strutturale

Verifica : Flag di verifica allo scorrimento del singolo elemento. Se l'elemento è collegato Locale al resto della fondazione, la condizione di slittamento del singolo elemento non

pregiudica la verifica globale della intera fondazione

S(Vres) : Somma dei contributi resistenti dei vari elementi strutturali

S(Fh) : Somma dei contributi delle azioni orizzontali trasmesse dai vari elementi

strutturali

Verifica Globale : Flag di verifica globale allo scorrimento della intera fondazione

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate sia nella tabella di stampa della portanza globale della fondazione, sia nella tabella della portanza di fondazione delle platee calcolata con analisi elastica del terreno:

Tabella 1: Moltiplicatori di Collasso

Comb. Nro : Numero della combinazione

Risultante : Valore della risultante delle forze trasmesse dalla fondazione per la

combinazione attuale

Resistenza : Valore della resistenza del terreno mobilitata in base al moltiplicatore dei carichi

attuale

Moltipl. Collasso : Valore del moltiplicatore dei carichi con cui è stato eseguito il calcolo. Poiche'

tutti i coefficienti di sicurezza sono gia' stati considerati nei carichi e nelle caratteristiche dei materiali, un moltiplicatore = 1 significa che la verifica di

portanza e' soddisfatta.

%Pl.Molle : Percentuale delle molle in fase plastica nella combinazione attuale

STATUS: Per moltiplicatori di collasso < 1 mostra NOVERIF, altrimenti OK

Tabella 2: Abbassamenti

Nodo3d : Numero del nodo3d a cui si riferisce la molla elasto-plastica

SpostZ : Abbassamento della molla elasto-plastica in corrispondenza del nodo3d

 $SpostZ/SpostEl \qquad : \ Fattore \ di \ plasticizzazione \ della \ molla:$

FASE ELASTICA ≤ 1 ; FASE PLASTICA > 1

Se per alcuni nodi non e' stato possibile ottenere la caratterizzazione geotecnica,

allora tali nodi vengono esclusi dal modello di calcolo e la relativa molla viene contrassegnata in stampa con la sigla 'SCARTATA'

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa dei cedimenti.

Filo : numero del filo fisso in corrispondenza del quale viene calcolato

lo stato deformativo

Comb. : numero di combinazione di carico

Ced.El. : cedimento elastico

Ced.Ed. : cedimento edometrico

• SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella dello stato tensionale.

Filo : numero del filo fisso in corrispondenza del quale viene

calcolato lo stato tensionale

Quot : quota dalla superficie in corrispondenza della quale viene calcolato lo

stato tensionale

Fattore di correlazione CSI per il calcolo di Rk pali

Tens. : tensione verticale indotta dai carichi esterni

	DATI G	ENEF	RALI	
COEFFIC	CIENTI PAR	ZIA	LI GEOTECN	ICA
		T	ABELLA M1	TABELLA M2
Tangente Resist. Taglio			1,00	
Peso Specifico			1,00	
Coesione Efficace (c'k)			1,00	
Resist. a taglio NON drenata (cuk	()		1,00	
Tipo Approccio			Combinazione Un	ica: (A1+M1+R3)
Tipo di fondazione			Su Pali	Infissi
	COEFFICIENTE	R1	COEFFICIENTE R2	COEFFICIENTE R3
Capacita' Portante				2,30
Scorrimento				1,10
Resist. alla Base				1,15
Resist. Lat. a Compr.				1,15
Resist. Lat. a Traz.				1,25
Carichi Trasversali				1,30

	CRITERI DI PROGETTO GEOTECNICI - FONDAZIONI SUPERFICIALI																		
IDEN	IDEN CARATTERISTICHE DI SITO)		IDEN CARATTERISTICHE DI SITO					IDEN	CARATTERISTICHE DI SITO				5		
Crit	Falda	Affond	Ricopr	Pend.X	Pend.Y		Crit	Falda	Affond	Ricopr	Pend.X	Pend.Y		Crit	Falda	Affond	Ricopr	Pend.X	Pend.Y
N.ro	(m)	(m)	(m)	(grd)	(Grd)		N.ro	(m)	(m)	(m)	(grd)	(Grd)		N.ro	(m)	(m)	(m)	(grd)	(Grd)
1		0.00	0.00	0	0		2		0.00	0.00	0	0							

1,70

	GEOMETRIA TRAVI WINKLER															
	IDE	NTIFI	CATI	VO		COORDINATE 3D ESTREMI ASTA WINKLER DATIIMPROI						RONTA				
Trave							Y3dIn.	Z3dIn.	X3dFin	Y3dFin	Z3dFin	Xfond	Yfond	Zfond	Bfond	Lfond
N.ro	N.ro	ln.	Fin	Iniz.	Fin.	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)
1	1	1	2	1	2	0,00	0,00	0,00	0,00	1,55	0,00	-0,15	0,77	0,30	0,70	1,55
2	2	2	5	2	3	0,00	1,55	0,00	0,00	3,10	0,00	-0,15	2,32	0,30	0,70	1,55
3	3	7	8	4	5	-6,48	0,00	0,00	-6,48	1,55	0,00	-6,33	0,77	0,30	0,70	1,55
4	4	8	9	5	6	-6,48	1,55	0,00	-6,48	3,10	0,00	-6,33	2,32	0,30	0,70	1,55

	STRATIGRAFIA TRAVI WINKLER														
Trave N.ro	Q.t.v. (m)	Q.t.d. (m)	Q.falda (m)	Incl Grd	Kw kg/cmc	Numero Strato	Sp.str. (m)	Peso Sp kg/mc	Fi' (Grd)	C' kg/cmq	Cu kg/cmq	Mod.El. kg/cmq	Poisson	Gr.Sovr	Mod.Ed. kg/cmq
1	0,30	0,00		0	6,00	1		1542	28,00	0,16	0,00	145,10	0,45	1,00	174,11
2	0,30	0,00		0	6,00	1		1542	28,00	0,16	0,00	145,10	0,45	1,00	174,11
3	0,30	0,00		0	6,00	1		1542	28,00	0,16	0,00	145,10	0,45	1,00	174,11
4	0,30	0,00		0	6,00	1		1542	28,00	0,16	0,00	145,10	0,45	1,00	174,11

	CC	MBINAZ	IONI CAR	ICHI - S.L	U A1				
DESCRIZIONI	1	2	3	4	5	6	7	8	9
Peso Strutturale	1,30	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Perm.Non Strutturale	1,50	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Var.Scale	1,50	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60
Sisma direz. grd 0	0,00	1,00	1,00	-1,00	-1,00	0,30	0,30	-0,30	-0,30
Sisma direz. grd 90	0,00	0,30	-0,30	0,30	-0,30	1,00	-1,00	1,00	-1,00

COMBINAZIONI RARE -	S.L.E.
DESCRIZIONI	1
Peso Strutturale	1,00
Perm.Non Strutturale	1,00
Var.Scale	1,00

Studio PARIS engineering SOFTWARE:C.D.G. - Computer Design Geo Structures - Rel.2022 - Lic. Nro: 34595

COMBINAZIONI RARE - S.L.E.

DESCRIZIONI	1
Sisma direz. grd 0	0,00
Sisma direz. grd 90	0,00

COMBINAZIONI FREQUENTI - S.L.E.

002	
DESCRIZIONI	1
Peso Strutturale	1,00
Perm.Non Strutturale	1,00
Var.Scale	0,70
Sisma direz. grd 0	0,00
Sisma direz, grd 90	0.00

COMBINAZIONI PERMANENTI - S.L.E.

DESCRIZIONI	1
Peso Strutturale	1,00
Perm.Non Strutturale	1,00
Var.Scale	0,60
Sisma direz. grd 0	0,00
Sisma direz, grd 90	0.00

RISULTANTI SOLLECITAZIONI TRAVI WINKLER - SLU

		1110021	AITH OOLLE	MALIOINI II	IAVI WIINEEI	OLO	
Trave	Combi	nazione	Rv	Vx	Vy	Mrx	Mry
N.ro	N	.ro	(kg)	(kg)	(kg)	kg*cm	kg*cm
1		A1/1	26638	0	0	167724	646965
	X+	A1/3	21265	658	659	220463	273177
	Χ-	A1/5	21611	707	799	203480	578153
	Y+	A1/8	5565	37	625	230089	470770
	Y-	A1/9	30064	377	3432	446085	471757
2		A1/1	25455	0	0	126532	646999
	X+	A1/2	20951	686	774	177290	107802
	X-	A1/4	20605	637	639	200010	696493
	Y+	A1/6	29404	368	3356	423228	259264
	Y-	A1/7	4905	32	551	256732	415207
3		A1/1	26915	0	0	164624	42706
	X+	A1/3	22433	694	695	235688	197348
	X-	A1/5	22433	734	829	235688	248657
	Y+	A1/6	2438	31	278	314787	41246
	Y-	A1/9	33200	416	3790	532098	92555
4		A1/1	28068	0	0	195268	42727
	X+	A1/2	23171	758	856	255307	214114
	X-	A1/4	23171	717	718	255307	265447
	Y+	A1/6	33938	425	3874	551713	46268
	Y-	A1/9	3176	40	363	295162	97601

RISULTANTI SOLLECITAZIONI TRAVI WINKLER - SLD

Trave		oinazione	Rv	Vx	Vy	Mrx	Mry
N.ro		N.ro	(kg)	(kg)	(kg)	kg*cm	kg*cm
1		SLD/1	26638	0	0	167724	646965
	X+	SLD/3	19291	237	237	158523	359023
	Χ-	SLD/5	19442	252	285	151110	492140
	Y+	SLD/8	12439	32	555	38137	445269
	Y-	SLD/9	23132	115	1048	257004	445700
2		SLD/1	25455	0	0	126532	646999
	X+	SLD/2	18782	244	275	126216	286851
	X-	SLD/4	18631	229	229	136133	543807
	Y+	SLD/6	22472	112	1018	233565	352962
	Y-	SLD/7	11779	31	525	63229	421029
3		SLD/1	26915	0	0	164624	42706
	X+	SLD/3	19833	243	244	164103	71683
	X-	SLD/5	19833	258	291	164103	122992
	Y+	SLD/6	11105	55	503	76171	3547
	Y-	SLD/9	24532	122	1111	293482	54856

RISULTANTI SOLLECITAZIONI TRAVI WINKLER - SLD

			, O 	<u> </u>	.,		
Trave	Comb	oinazione	Rv	Vx	Vy	Mrx	Mry
N.ro	N.ro		(kg)	(kg)	(kg)	kg*cm	kg*cm
4		SLD/1	28068	0	0	195268	42727
	X+	SLD/2	20571	267	302	183723	78994
	X-	SLD/4	20571	253	253	183723	130328
	Y+	SLD/6	25271	126	1145	313101	5732
	Y-	SLD/9	11844	59	536	56549	57065

				VERIFIC	A ALLO SC	ORRIMENT	O - CONDIZIO	ONI DRENATE				
IDENTIF	ICATIVO							RISULTATI				
Combinazione N.ro	Tipo Elem.	Elem N.ro	N (t)	Tg(fi)/ Gfi/Gr	C/Gc/Gr t/mq	Area mq	Vres (t)	Fh (t)	Verifica Locale	S(Vres) (t)	S(Fh) (t)	Verifica Globale
A1 / 6	TRAVE TRAVE TRAVE TRAVE	1 2 3 4	5,46 29,40 2,44 33,94	0,244 0,244 0,244 0,244	1,45 1,45 1,45 1,45	1,085 1,085 1,085 1,085	2,91 8,74 2,17 9,85	0,63 3,38 0,28 3,90	OK OK OK OK	2,91 11,65 13,82 23,67	0,63 4,00 4,28 8,18	ОК

PORTANZA GLOBALE -	MOLTIPLICATORI DI COLLASSO - SLU
--------------------	----------------------------------

		DRE	NATE			NON DF	RENATE		RIS	ULTATI
Comb	Risult	Resist	Moltipl.	%PI.	Risult	Resist	Moltipl.	%PI.	Moltipl.	STATUS
N.ro	(t)	(t)	Collasso	Moll	(t)	(t)	Collasso	Moll	Minimo	(m)
A2 / 1	107	112	1,050	0					1,050	OK
A2 / 2	71	75	1,050	0						OK
A2/3	71	75	1,050	0						OK
A2 / 4	71	75	1,050	0						OK
A2 / 5	71	75	1,050	0						OK
A2 / 6	71	75	1,050	0						OK
A2 / 7	71	75	1,050	0						OK
A2 / 8	71	75	1,050	0						OK
A2 / 9	71	75	1,050	0						OK

				POF	RTANZA G	LOBALE	- ABBASSA	MENTI C	OMBINAZ.: A	1/1					
	DRE	NATE	NON [DRENATE		DRE	NATE	NON E	PRENATE			DRE	NATE	NON E	RENATE
Nodo3d N.ro	SpostZ (cm)	SpostZ/ SpostEl	SpostZ (cm)	SpostZ/ SpostEl	Nodo3d N.ro	SpostZ (cm)	SpostZ/ SpostEl	SpostZ (cm)	SpostZ/ SpostEl	Nodo N.r	3d Sp	oostZ (cm)	SpostZ/ SpostEl	SpostZ (cm)	SpostZ/ SpostEl
1 4	-0,428 -0,445	ELAST. ELAST.			2 5	-0,414 -0,438	ELAST. ELAST.				-	0,419 0,454	ELAST. ELAST.		

PORTANZA GLOBALE - MOLTIPLICATORI DI COLLASSO - SLD

		DRE	NATE			NON DF	RENATE		RIS	ULTATI
Comb	Risult	Resist	Moltipl.	%PI.	Risult	Resist	Moltipl.	%PI.	Moltipl.	STATUS
N.ro	(t)	(t)	Collasso	Moll	(t)	(t)	Collasso	Moll	Minimo	(m)
A2 / 1	107	112	1,050	0					1,050	OK
A2 / 2	71	75	1,050	0						OK
A2/3	71	75	1,050	0						OK
A2 / 4	71	75	1,050	0						OK
A2 / 5	71	75	1,050	0						OK
A2 / 6	71	75	1,050	0						OK
A2 / 7	71	75	1,050	0						OK
A2 / 8	71	75	1,050	0						OK
A2 / 9	71	75	1,050	0						OK

				POR	TANZA GI	LOBALE -	ABBASSA	MENTI CO	MBINAZ.: SL	.D/1				
	DRE	NATE	NON I	DRENATE		DRE	NATE	NON E	RENATE		DRE	NATE	NON E	RENATE
Nodo3d	SpostZ	SpostZ/	SpostZ	SpostZ/	Nodo3d	SpostZ	SpostZ/	SpostZ	SpostZ/	Nodo3d	SpostZ	SpostZ/	SpostZ	SpostZ/
N.ro	(cm)	SpostEl	(cm)	SpostEl	N.ro	(cm)	SpostEl	(cm)	SpostEl	N.ro	(cm)	SpostEl	(cm)	SpostEl
1	-0,428	ELAST.			2	-0,414	ELAST.			3	-0,419	ELAST.		
4	-0,445	ELAST.			5	-0,438	ELAST.			6	-0,454	ELAST.		

							CEDIMI	ENTI ELAST	ICI	I ED E	OMETRICI						
Filo	Combinaz	Ced.El.	Ced.Ed.		Filo	Combinaz	Ced.El.	Ced.Ed.		Filo	Combinaz	Ced.El.	Ced.Ed.	Filo	Combinaz	Ced.El.	Ced.Ed.
N.ro	N.ro	cm	cm		N.ro	N.ro	cm	cm		N.ro	N.ro	cm	cm	N.ro	N.ro	cm	cm
1	Rare 1 Freq 1 Perm 1 MAX.	0,02 0,02 0,02 0,02	0,02 0,02 0,02 0,02		2	Rare 1 Freq 1 Perm 1 MAX.	0,02 0,02 0,02 0,02	0,02 0,02 0,02 0,02 0,02		5	Rare 1 Freq 1 Perm 1 MAX.	0,03 0,02 0,02 0,03	0,02 0,02 0,02 0,02	7	Rare 1 Freq 1 Perm 1 MAX.	1,03 0,96 0,94 1,03	0,86 0,80 0,78 0,86
8	Rare 1	0,74	0,62	П	9	Rare 1	1,10	0,92	Г	I							

						CEDIMI	ENTI ELAST	ICI	ED ED	OMETRICI						
Filo	Combinaz	Ced.El.	Ced.Ed.	Filo	Combinaz	Ced.El.	Ced.Ed.		Filo	Combinaz	Ced.El.	Ced.Ed.	Filo	Combinaz	Ced.El.	Ced.Ed.
N.ro	N.ro	cm	cm	N.ro	N.ro	cm	cm		N.ro	N.ro	cm	cm	N.ro	N.ro	cm	cm
	Freq 1	0,69	0,57		Freq 1	1,02	0,85			•				•		
	Perm 1	0,67	0,56		Perm 1	0,99	0,83									
	MAX.	0,74	0,62		MAX.	1,10	0,92									

					STA	ΤО	TENS	SIONALE	NEL TER	RE	ENO - (OMBIN	AZIONE:F	Rare	1					
Filo	Quota	Tens.	Filo	Quota	Tens.		Filo	Quota	Tens.		Filo	Quota	Tens.		Filo	Quota	Tens.	Filo	Quota	Tens.
N.ro	m	kg/cmq	N.ro	m	kg/cmq		N.ro	m	kg/cmq		N.ro	m	kg/cmq		N.ro	m	kg/cmq	N.ro	m	kg/cmq
1	7,9	0,01	2	8,0	0,01		5	7,9	0,01		7	0,3	2,26		8	0,3	1,50	9	0,3	2,42
	8,0	0,01		8.1	0,01			8,0	0,01			0,4	2,09			0,4	1,38		0,4	2,24
	8,1	0,00		8,2	0,00			8,1	0,00			0,5	1,77			0,5	1,25		0,5	1,90
	8,2	0,00		8,3	0,00			8,2	0,00			0,6	1,46			0,6	1,12		0,6	1,56
	8,3	0,00		8,4	0,00			8,3	0,00			0,7	1,21			0,7	1,01		0,7	1,29
	8,4	0,00		8,5	0,00			8,4	0,00			0,8	1,01			0,8	0,91		0,8	1,08
	8,5	0,00		8,6	0,00			8,5	0,00			0,9	0,86			0,9	0,69		0,9	0,91
	8,6	0,00		8,7	0,00			8,6	0,00			1,0	0,65			1,0	0,63		1,0	0,69
	8,7	0,00		8,8	0,00			8,7	0,00			1,1	0,51			1,1	0,49		1,1	0,54
	8,8	0,00		0,0	0,00			8,8	0,00			1,2	0,35			1,2	0,33		1,2	0,37
	0,0	0,00		0,0	0,00			0,0	0,00			1,3	0,28			1,3	0,14		1,3	0,30
	0,0	0,00		0,0	0,00			0,0	0,00			1,4	0,26			1,4	0,14		1,4	0,27
	0,0	0,00		0,0	0,00			0,0	0,00			1,5	0,21			1,5	0,10		1,5	0,22
	0,0	0,00		0,0	0,00			0,0	0,00			1,6	0,18			1,6	0,10		1,6	0,19
	0,0	0,00		0,0	0,00			0,0	0,00			1,7	0,17			1,7	0,07		1,7	0,17
	0,0	0,00		0,0	0,00			0,0	0,00			1,8	0,14			1,8	0,07		1,8	0,15
	0,0	0,00		0,0	0,00			0,0	0,00			1,9	0,04			1,9	0,04		1,9	0,04
	0,0	0,00		0,0	0,00			0,0	0,00			2,0	0,04			2,0	0,02		2,0	0,03
	0,0	0,00		0,0	0,00			0,0	0,00			2,1	0,04			2,1	0,02		2,1	0,04
	0,0	0,00		0,0	0,00			0,0	0,00			2,2	0,03			2,2	0,00		2,2 2,3	0,03
	0,0	0,00		0,0	0,00			0,0	0,00			2,3	0,03			2,3	0,00		2,3	0,03
	0,0	0,00		0,0	0,00			0,0	0,00			2,4	0,03			2,4	0,00		2,4	0,03
	0,0	0,00		0,0	0,00			0,0	0,00			2,5	0,03			2,5	0,00		2,5	0,03
	0,0	0,00		0,0	0,00			0,0	0,00			2,6	0,02			2,6	0,00		2,6	0,02
	0,0	0,00		0,0	0,00			0,0	0,00			2,7	0,02			2,7	0,00		2,7	0,02
	0,0	0,00		0,0	0,00			0,0	0,00			2,8	0,02			2,8	0,00		2,8	0,02
	0,0	0,00		0,0	0,00			0,0	0,00			2,9	0,02			2,9	0,00		2,9	0,02
	0,0	0,00		0,0	0,00			0,0	0,00			3,0	0,02			3,0	0,00		3,0	0,02
	0,0	0,00		0,0	0,00			0,0	0,00			3,1	0,02			3,1	0,00		3,1	0,02
	0,0	0,00		0,0	0,00	J		0,0	0,00	Ш		3,2	0,02			3,2	0,00		3,2	0,01

					STA	ΤО	TENS	IONALE	NEL TER	RE	ENO - C	OMBIN	AZIONE:F	rec	1 1						
Filo	Quota	Tens.	Filo	Quota	Tens.		Filo	Quota	Tens.		Filo	Quota	Tens.		Filo	Quota	Tens.		Filo	Quota	Tens.
N.ro	m	kg/cmq	N.ro	m	kg/cmq		N.ro	m	kg/cmq		N.ro	m	kg/cmq		N.ro	m	kg/cmq		N.ro	m	kg/cmq
1	7,9	0,01	2	8,0	0,01		5	7,9	0,01		7	0,3	2,10		8	0,3	1,39		9	0,3	2,25
	8,0	0,00		8,1	0,01			8,0	0,01			0,4	1,94			0,4	1,29			0,4	2,08
	8,1	0,00		8,2	0,00			8,1	0,00			0,5	1,65			0,5	1,16			0,5	1,76
	8,2	0,00		8,3	0,00			8,2	0,00			0,6	1,36			0,6	1,04			0,6	1,45
	8,3	0,00		8,4	0,00			8,3	0,00			0,7	1,12			0,7	0,94			0,7	1,19
	8,4	0,00		8,5	0,00			8,4	0,00			0,8	0,94			0,8	0,85			0,8	1,00
	8,5	0,00		8,6	0,00			8,5	0,00			0,9	0,80			0,9	0,64			0,9	0,85
	8,6	0,00		8,7	0,00			8,6	0,00			1,0	0,60			1,0	0,58			1,0	0,64
	8,7	0,00		8,8	0,00			8,7	0,00			1,1	0,47			1,1	0,46			1,1	0,50
	8,8	0,00		0,0	0,00			8,8	0,00			1,2	0,33			1,2	0,31			1,2	0,34
	0,0	0,00		0,0	0,00			0,0	0,00			1,3	0,26			1,3	0,13			1,3	0,28
	0,0	0,00		0,0	0,00			0,0	0,00			1,4	0,24			1,4	0,13			1,4	0,25
	0,0	0,00		0,0	0,00			0,0	0,00			1,5	0,20			1,5	0,10			1,5	0,21
	0,0	0,00		0,0	0,00			0,0	0,00			1,6	0,17			1,6	0,10			1,6	0,17
	0,0	0,00		0,0	0,00			0,0	0,00			1,7	0,15			1,7	0,07			1,7	0,16
	0,0	0,00		0,0	0,00			0,0	0,00			1,8	0,13			1,8	0,07			1,8	0,14
	0,0	0,00		0,0	0,00			0,0	0,00			1,9	0,04			1,9	0,04			1,9	0,04
	0,0	0,00		0,0	0,00			0,0	0,00			2,0	0,03			2,0	0,02			2,0	0,03
	0,0	0,00		0,0	0,00			0,0	0,00			2,1	0,03			2,1	0,02			2,1	0,03
	0,0	0,00		0,0	0,00			0,0	0,00			2,2	0,03			2,2	0,00			2,2	0,03
	0,0	0,00		0,0	0,00			0,0	0,00			2,3	0,03			2,3	0,00			2,3	0,03
	0,0	0,00		0,0	0,00			0,0	0,00			2,4	0,03			2,4	0,00			2,4	0,02
	0,0	0,00		0,0	0,00			0,0	0,00			2,5	0,03			2,5	0,00			2,5	0,03
	0,0	0,00		0,0	0,00			0,0	0,00			2,6	0,02			2,6	0,00			2,6	0,02
	0,0	0,00 0,00		0,0	0,00 0.00			0,0	0,00 0,00			2,7	0,02 0,02			2,7	0,00 0,00			2,7	0,02 0,02
	0,0	0,00		0,0 0,0	0,00			0,0 0,0	0,00			2,8	0,02			2,8	0,00			2,8	0,02
	0,0 0,0	0,00		0,0	0,00			0,0	0,00			2,9 3,0	0,02			2,9 3,0	0,00			2,9 3,0	0,02
	0,0	0,00		0,0	0.00			0,0	0,00			3,0 3,1	0,02			3,0 3,1	0,00			3,0 3,1	0,02
	0,0	0.00		0,0	0,00			0,0	0,00			3,1	0,02			3,1	0,00			3,1	0,02
	0,0	0,00		0,0	0,00	- 11		0,0	0,00	11		٥,٢	0,01			٥,٧	0,00	11 1		٥,٢	0,01

					STAT	0.	TENS	IONALE	NEL TER	RE	NO - 0	COMBINA	AZIONE:P	err	n 1					
Filo	Quota	Tens.	Filo	Quota	Tens.		Filo	Quota	Tens.		Filo	Quota	Tens.		Filo	Quota	Tens.	Filo	Quota	Tens.
N.ro	m	kg/cmq	N.ro	m	kg/cmq		N.ro	m	kg/cmq		N.ro	m	kg/cmq		N.ro	m	kg/cmq	N.ro	m	kg/cmq
1	7,9	0,01	2	8,0	0,01		5	7,9	0,01		7	0,3	2,05		8	0,3	1,36	9	0,3	2,19
	8,0	0,00		8,1	0,01			8,0	0,00			0,4	1,90			0,4	1,25		0,4	2,02
	8,1	0,00		8,2	0,00			8,1	0,00			0,5	1,61			0,5	1,13		0,5	1,71
	8,2	0,00		8,3	0,00			8,2	0,00			0,6	1,32			0,6	1,01		0,6	1,41
	8,3	0,00		8,4	0,00			8,3	0,00			0,7	1,09			0,7	0,91		0,7	1,16
	8,4	0,00 0,00		8,5 8,6	0,00 0,00			8,4 8,5	0,00 0,00			8,0	0,91 0,78			0,8 0,9	0,83 0,62		0,8 0,9	0,97 0,82
	8,5 8,6	0,00		8,7	0,00			8,6	0,00			0,9 1,0	0,78			1,0	0,62		1,0	0,62
	8,7	0,00		8,8	0,00			8,7	0,00			1,1	0,36			1,0	0,37		1,0	0,62
	8,8	0,00		0,0	0,00			8,8	0,00			1,2	0,32			1,2	0,30		1,2	0,34
	0,0	0,00		0,0	0.00			0,0	0.00			1,3	0,26			1,3	0,13		1,3	0,27
	0,0	0,00		0,0	0,00			0,0	0,00			1,4	0,23			1,4	0,13		1,4	0,24
	0,0	0,00		0,0	0,00			0,0	0,00			1,5	0,19			1,5	0,09		1,5	0,20
	0,0	0,00		0,0	0,00			0,0	0,00			1,6	0,16			1,6	0,09		1,6	0,17
	0,0	0,00		0,0	0,00			0,0	0,00			1,7	0,15			1,7	0,06		1,7	0,16
	0,0	0,00		0,0	0,00			0,0	0,00			1,8	0,13			1,8	0,06		1,8	0,13
	0,0	0,00		0,0	0,00			0,0	0,00			1,9	0,04			1,9	0,04		1,9	0,04
	0,0	0,00		0,0	0,00			0,0	0,00			2,0	0,03			2,0	0,02		2,0	0,03
	0,0	0,00		0,0	0,00			0,0	0,00			2,1	0,03			2,1	0,02		2,1	0,03
	0,0	0,00		0,0	0,00			0,0	0,00			2,2	0,03			2,2	0,00		2,2	0,03
	0,0	0,00		0,0	0,00			0,0	0,00			2,3	0,03			2,3	0,00		2,3	0,03
	0,0	0,00 0,00		0,0 0,0	0,00 0,00			0,0 0,0	0,00 0,00			2,4 2,5	0,02 0,03			2,4	0,00 0,00		2,4 2,5	0,02 0,02
	0,0 0,0	0,00		0,0	0.00			0,0	0,00			2,5 2,6	0,03			2,5 2,6	0,00		2,5 2,6	0,02
	0,0	0,00		0,0	0.00			0,0	0,00			2,0	0,02			2,0	0,00		2,0	0,02
	0,0	0,00		0,0	0,00			0,0	0,00			2,8	0,02			2,8	0.00		2,8	0,02
	0,0	0,00		0,0	0,00			0,0	0,00			2,9	0,02			2,9	0,00		2,9	0.02
	0,0	0.00		0,0	0.00			0,0	0.00			3,0	0,02			3,0	0.00		3,0	0,02
	0,0	0.00		0,0	0.00	1		0,0	0,00			3,1	0,02			3,1	0,00		3,1	0,02
	0,0	0,00		0,0	0,00			0,0	0,00			3,2	0,01			3,2	0,00		3,2	0,01
				·																

Avezzano, marzo 2022

Studio Paris engineering